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Separation of variables for scalar evolution equations in
one space dimension

Philip W Doyle
Department of Mathematics, University of Hawaii, Honolulu, HI 96822, USA

Received 29 May 1996

Abstract. The flow of an autonomouskth-order evolution equation in one space dimension is
generated by akth-order ordinary differential operator on the space of fields. The characteristic
fields are the solutions of the characteristic equation of the operator. A solution of the evolution
equation is separable if and only if it is a curve in the(k + 1)-parameter space of characteristic
fields. The non-stationary characteristic fields with separable evolution are those which remain
characteristic under small dilation. Every characteristic field has local separable evolution if and
only if the characteristic equation is infinitesimally dilation invariant. This is the case when the
evolutionary generator is an infinitesimal symmetry of the characteristic equation, so that its flow
stabilizes the space of characteristic fields. The evolution equation is then locally homogeneous
if and only if the characteristic value is an invariant of the restricted flow, which is a non-
generic property. The separablekth-order evolution equations are parametrized by thekth-order
invariants of the locally homogeneous(k + 1)th-order ordinary differential equations.

1. Introduction

An autonomous scalar evolution equation in one space dimension is a partial differential
equation

∂u

∂t
= F

(
x, u,

∂u

∂x
, . . . ,

∂ku

∂xk

)
(1)

for a single unknown functionu of two variablesx and t. We assume thatF is smooth
(C∞). A solution of equation (1) is a smooth functionu(x, t) defined on a connected open
subset of thext-plane with

∂u

∂t
(x, t) = F

(
x, u(x, t),

∂u

∂x
(x, t), . . . ,

∂ku

∂xk
(x, t)

)
at all points of its domain. In physical terms, the valueu(x, t) represents a measurable
quantity at the pointx in space at timet, and the equation (1) governs the temporal
evolution of the fieldx 7−→ u(x, t). This interpretation leads us to require that the domain
of a solution be a product of intervals inx and t. Because equation (1) is autonomous, we
need only consider solutions defined fort in an interval containingt = 0. The relevant
initial value problem consists of finding a solutionu(x, t) such that

u(x, 0) = v(x) (2)

for given datav. In this study, we are concerned with local properties of solutions, and do
not address questions related to boundary conditions or global existence.
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A solution u(x, t) is separableif it has the form

u(x, t) = v(x)w(t) (3)

for some functionsv and w. The search for separable solutions of partial differential
equations has been most effective for linear equations and for special types of first-order
nonlinear equations. For example, a summary of the results linking the separable coordinate
systems for the Helmholz and Hamilton–Jacobi equations with their symmetry structure is
given in Miller [1]. Kalnins and Miller [2] derived conditions for completely general
equations which are both necessary and sufficient for the existence of a complete set of
separable solutions in a given coordinate system. They used their conditions to characterize
regularly separable linear equations [2], and then extended the construction to nonlinear
equations [3]. The implications of these results have not been fully developed, however,
perhaps because of their complexity and generality. In particular, the geometric significance
of the separation conditions is not evident. Various researchers have recently studied
separation of variables for special types of higher-order nonlinear equations. For example,
Grundland and Infeld [4], Miller and Rubel [5], and Zhdanov [6] studied separability for
the one-dimensional (1D)f -Gordon equation, and Doyle and Vassiliou [7] classified the
separable 1D nonlinear diffusion equations. In this work, we characterize the separable
solutions of the general 1D evolution equation and describe the separation mechanism. We
give a geometric interpretation of regular separability, parametrize the class of regularly
separable equations, and characterize the subclass of homogeneous equations.

2. Preliminaries

The notation

ut = ∂u

∂t
uj = ∂ju

∂xj

abbreviates the equation (1) to

ut = F(x, u, u1, . . . , uk). (4)

We assumek > 1 andFuk
6= 0, so that (4) is akth-order differential equation. Thekth-order

ordinary differential operator

F [u] = F(x, u, u1, . . . , uk)

is a map on the space of smooth fields which takesu(x) to

F [u(x)] = F(x, u(x), u1(x), . . . , uk(x)).

Viewing F [u(x)]∂u as a vector on the fieldu(x), a solutionu(x, t) of the equation

ut = F [u]. (5)

is a smooth curve in the space of fields, tangent at each value of the parametert to the
vector field

V = F [u]∂u

i.e. a solution is a trajectory ofV . The initial condition (2) is the requirement that the
trajectory pass through the fieldv at t = 0. In general, we cannot claim either that there exists
such a trajectory or that it is unique. The singular points ofV are the time-independent or
stationarysolutions of (5). They are the solutionsu(x) of thekth-order ordinary differential
equation

F [u] = 0.
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There is ak-parameter family of stationary solutions, assuming that the solution set of the
functional equation

F(x, u, u1, . . . , uk) = 0

in the space of variablesx, u, u1, . . . , uk is non-empty. The autonomous evolutionary
form (5) is preserved by arbitrary smooth transformation inx and u, and by affine
transformation int. In the field variableū, where ū(u) is a smooth regular function,
equation (5) is

ūt = F̄ [ū]

where

F̄ [ū] = ū′(u)F [u]. (6)

The relationship (6) is the usual transformation law for the coordinate representation of a
vector field, so that

F [u]∂u = F̄ [ū]∂ū.

Note that the stationary solutions have intrinsic significance.

3. Homogeneous evolution equations; example of a non-homogeneous separable
equation

A linear equation

ut = Lu (7)

where

L = fk(x)∂x
k + · · · + f1(x)∂x + f0(x)

with fk 6= 0, is separable in the sense that it has many separable solutions. A non-zero
function (3) is a solution of (7) if and only ifv and w satisfy the ordinary differential
equations

Lv/v = λ (8)

and

w′/w = λ

for some constantλ. The stationary solutions correspond toλ = 0. Equation (7) has ak-
dimensional vector space of stationary solutions and a(k +1)-parameter family of non-zero
separable solutions. Henceforth, we tacitly assume wherever necessary that functions are
non-zero.

More generally, equation (5) ishomogeneousif it has the form

ut = ug(x, u1/u, . . . , uk/u) (9)

for some functiong(x, z1, . . . , zk) with gzk
6= 0. Homogeneous equations are also separable.

A function (3) is a solution of (9) if and only ifv and w satisfy the ordinary differential
equations

g(x, v1/v, . . . , vk/v) = λ (10)

and

w′/w = λ
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for some constantλ. The stationary solutions correspond toλ = 0. Equation (9) has a
k-parameter family of stationary solutions and a(k + 1)-parameter family of separable
solutions.

We now discuss an example where the separation mechanism is more subtle. Fix a
regular functiong(z) with g(0) = 0. A function (3) is a solution of the second-order
equation

ut = ug(u − xux + x2uxx/2) (11)

if and only if

w′(t)/w(t) = g((v(x) − xv′(x) + x2v′′(x)/2)w(t)). (12)

Differentiating with respect tox implies the necessary condition

vxxx = 0. (13)

Conversely, if

v(x) = λ0 + λ1x + λ2x
2

then

v(x) − xv′(x) + x2v′′(x)/2 = λ0

and (12) is a single ordinary differential equation

w′/w = g(λ0w).

We find that equation (11) has a three-parameter family of non-stationary separable solutions

u(x, t) = (λ0 + λ1x + λ2x
2)w(t)

whereλ0 6= 0 and

t =
∫ w

1

dz

zg(λ0z)

and a two-parameter family of stationary solutions

u(x, t) = λ1x + λ2x
2.

Note that conditions (8) or (10) or (13) are satisfied if and only if

F [v] = λv

for some constantλ, whereF is the appropriate operator.

4. The characteristic equation; regular separability

A non-zero smooth functionu(x, t), defined on a product of intervalsx and t has form (3)
if and only if it satisfies the partial differential equation

uxt = uxut/u. (14)

Hence the separable solutions of (5) are the solutions of the overdetermined system of
equations (5) and (14). The stationary solutions of (5) satisfy (14), for any operatorF, but
we do not generally expect joint solutions which depend ont. If u(x, t) is a solution of (5)
then

∂

∂x

(
F [u(x, t)]

u(x, t)

)
= 1

u(x, t)

(
∂2u(x, t)

∂x∂t
− 1

u(x, t)

∂u(x, t)

∂x

∂u(x, t)

∂t

)
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so the solution is separable if and only if it satisfies the differential equation

Dx(F [u]/u) = 0 (15)

where

Dx = ∂x + u1∂u + u2∂u1 + · · ·
is the totalx-derivative. Note that the variablet enters into (15) as a parameter. Disregarding
t, we view thecharacteristic equation(15) as a(k+1)th-order ordinary differential equation.
A solution of (5) is separable if and only if it is a one-parameter family of solutions of the
characteristic equation of the operatorF.

Theorem 1. A non-zero solutionu(x, t) of the equation

ut = F [u] (16)

is separable if and only if the functionx 7−→ u(x, t) is a solution of the ordinary differential
equation

Dx(F [u]/u) = 0

for each value oft.

A characteristic fieldof the operatorF is a non-zero functionu(x) such that

F [u(x)] = λu(x)

for some constantλ, the characteristic valueof the field. For example, the characteristic
fields with valueλ = 0 are the non-zero stationary solutions of (5). The characteristic fields
of F are the solutions of the characteristic equation (15). Theorem 1 shows that a solution
of (16) is separable if and only if it is a curve in the(k+1)-parameter space of characteristic
fields ofF. In particular, the initial value of any separable solution is characteristic. Which
characteristic fields are initial values of separable solutions? A characteristic fieldu(x) is
homogeneousif αu is characteristic for every value ofα in some interval containingα = 1,

i.e. if small dilations ofu are also characteristic.

Theorem 2. Fix a characteristic fieldv of the operatorF, with non-zero characteristic
value. There is a separable solutionu(x, t) of the initial value problem

ut = F [u] u(x, 0) = v(x) (17)

if and only if v is homogeneous, in which case there is anε > 0 such thatu(x, t) = v(x)w(t)

for |t | < ε, wherew is the unique solution of the initial value problem

w′ = W(w) w(0) = 1 (18)

where

W(w) = F [v(x)w]/v(x).

Proof. If v is homogeneous then

F [v(x)w]/v(x)

depends only on the parameterw, for values nearw = 1, and u(x, t) = v(x)w(t)

satisfies (17) ifw satisfies (18). Conversely, ifu(x, t) is a separable solution of (17)
thenu(x, t) = v(x)w(t), where

w′(t) = F [v(x)w(t)]/v(x) w′(0) = 1.

Each non-zero fieldvw(t) is characteristic, by theorem 1. Note thatw′(0) 6= 0, because the
characteristic value ofv is nonzero. Thereforev is homogeneous, andw(t) satisfies (18),
for small values oft . �
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For example, the characteristic equation of the operator

F [u] = uxx − 2uu2
x

is

uxxx = uxuxx/u + 4uuxuxx

and the homogeneous characteristic fields ofF are the linear functions. The characteristic
value of the fieldv(x) = x is λ = −2. The solution of the initial value problem

w′ = F [xw]/x w(0) = 1

is

w(t) = 1/
√

4t + 1

so the unique separable solution of the equation

ut = uxx − 2uu2
x (19)

with u(x, 0) = x is

u(x, t) = x/
√

4t + 1. (20)

The change of variableu 7−→ erf(u) transforms (19) to the linear diffusion equation

ut = uxx (21)

and transforms (20) to at-translate of the similarity solution

u(x, t) = erf(x/2
√

t).

All solutions

u(x) = ±eλ0+λ1x+λ2x
2

of the characteristic equation

uxxx = 3uxuxx/u − 2u3
x/u

2

of the operator

F [u] = uxx − u2
x/u

are homogeneous. The characteristic value of the fieldv(x) = ex2
is λ = 2. The solution

of the initial value problem

w′ = F [ex2
w]/ex2

w(0) = 1

is

w(t) = e2t

so the unique separable solution of the equation

ut = uxx − u2
x/u (22)

with u(x, 0) = ex2
is

u(x, t) = ex2+2t . (23)

The change of variableu 7−→ ln u transforms (22) to the linear equation (21), and transforms
(23) to the heat polynomial

u(x, t) = x2 + 2t.
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Equation (16) isregularly separable[2] if there is a separable solution of the initial
value problem (17) on a neighbourhood ofx, for eachx in the domain ofv, for each
characteristic fieldv. This holds if and only if every non-stationary characteristic field of
F is locally homogeneous, by theorem 2. Hence (16) is regularly separable when dilation
of the dependent variableu is a local symmetry of (15), i.e. when its charastic equation is
infinitesimally dilation invariant. The dilation invariant(k + 1)th-order ordinary differential
equations are those which locally have thehomogeneousform

uk+1 = uφ(x, u1/u, . . . , uk/u).

See Bluman and Kumei [8] or Olver [9, 10] for a discussion of symmetry and differential
equations. Theorem 3 is equivalent to theorem 4, which we prove carefully.

Theorem 3. Thekth-order equation

ut = F [u]

is regularly separable if and only if its characteristic equation

Dx(F [u]/u) = 0

is locally homogeneous.

A homogeneous equation (9) is regularly separable, because its characteristic equation

Dx(g(x, u1/u, . . . , uk/u)) = 0

is homogeneous. Equation (11) is not homogeneous, but is nevertheless regularly separable,
because its characteristic equation (13) is homogeneous. Equation (22) is homogeneous,
hence regularly separable. Equation (19) is not regularly separable.

5. Geometric formulation

We now cast the problem into differential geometric form. The construction is invariant,
but easiest to describe in the field variable which simplifies the separability condition. For
eitheru > 0 or u < 0, the change of variableu 7−→ ln |u| transforms (14) to

uxt = 0. (24)

The solutions of (24) are the functions withadditively separableform

u(x, t) = v(x) + w(t).

The additively separable solutions of the equation

ut = F [u] (25)

are the joint solutions of (24) and (25). The natural geometric context for studying the
compatibility of these equations is a structure which incorporates the independent and
dependent variables and the derivatives of the dependent variables. The variablesx, t,

andui,j , with i, j > 0 andi + j 6 k, are coordinates on the bundleJ k of kth-order jets of
smooth mappingsR2 −→ R, whereui,j represents the(i + j)th derivative∂i+ju/∂xi∂tj

of the variableu = u0,0. For example,ui,0 = ui, u0,1 = ut , andu1,1 = uxt . See Olver [10]
for the basic facts about jet bundles, contact structure, and prolongation, and Olver [11] for
discussion of differential constraints and compatibility conditions.

We begin with the anomalous case of the first-order equation

ut = F(x, u, ux). (26)
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Differentiating (26), we find that the joint solutions of (24) and (26) are the solutions of the
system

ut = F(x, u, ux)

utt = FFu(x, u, ux)

uxt = 0

uxx = −(Fx + uxFu)/Fux
(x, u, ux). (27)

The eight-dimensional manifoldJ 2 is parametrized by the variablesx, t, u, ux, ut , uxx, uxt ,
andutt , and relations (27) define a four-dimensional submanifoldR, parametrized byx, t, u,
andux . The pullbackC of the contact system onJ 2 to R is spanned by the independent
1-forms

θ = du − ux dx − F dt

and

θx = dux + (Fx + uxFu)/Fux
dx.

The two-dimensional integrals ofC are (locally) the second-order prolongations of the
solutions of (27). Note thatC is two-codimensional, regardless ofF , and hence has at
most a two-parameter family of two-dimensional integrals, so that (26) has at most a two-
parameter family of additively separable solutions. The maximal case occurs whenC is
integrable. We have

dθ ≡ 0 modC

and

dθx ≡ F((Fx + uxFu)/Fux
)u dt ∧ dx mod C

so C is integrable if and only if

((Fx + uxFu)/Fux
)u = 0. (28)

Proceeding to the casesk > 2, we find by differentiating (25) with respect tot that the
joint solutions of (24) and (25) are the solutions of the system

u0,j = (F∂u)
j−1F j = 1, . . . , k,

ui,j = 0 i, j > 1, i + j 6 k. (29)

The relations (29) define a(k + 3)-dimensional submanifoldR of J k, parametrized by the
variablesx, t, u, u1, . . . , uk. The pullbackC of the contact system onJ k to R is spanned
by the 1-forms

θ0 = du − u1 dx − u0,1 dt

θi = dui − ui+1 dx i = 1, . . . , k − 1

φj = du0,j − u0,j+1 dt j = 1, . . . , k − 1

with the t-derivatives ofu given by (29). The 2-dimensional integrals ofC are thekth-order
prolongations of the solutions of (29). We have

φ1 ≡ Fuk
θk mod θ0, . . . , θk−1

where

θk = duk + D̃xF/Fuk
dx
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with

D̃x = ∂x + u1∂u + u2∂u1 + · · · + uk∂uk−1

so C is spanned byθ0, . . . , θk, φ2, . . . , φk−1. Note thatθ0, . . . , θk are independent. This
implies thatC is at most two-codimensional, and hence has at most a(k + 1)-parameter
family of two-dimensional integrals, so that (25) has at most a(k + 1)- parameter family of
additively separable solutions. Equations (24) and (25) arecompatiblein the maximal case
whenC is both two-codimensional and integrable.

Theorem 4. Thekth-order equation

ut = F [u] (30)

and the additive separability condition

uxt = 0 (31)

are compatible if and only if

(D̃xF/Fuk
)u = 0. (32)

Proof. Condition (32) in the casek = 1 is (28). Fork = 2, the system (29) is

ut = F

utt = FFu

uxt = 0.

The five-dimensional manifoldR is parametrized by the variablesx, t, u, ux, anduxx and
C is spanned by the independent 1-forms

θ = du − uxdx − Fdt

θx = dux − uxxdx

θxx = duxx + D̃xF/Fuxx
dx

where

D̃x = ∂x + ux∂u + uxx∂ux
.

In this case,C is two-codimensional, regardless ofF. We have

dθ, dθx ≡ 0 modC

and

dθxx ≡ F(D̃xF/Fuxx
)udt ∧ dx mod C

so C is integrable if and only if (32) holds. Now supposek > 3. We will show thatC is
two-codimensional if and only if (32) holds, in which caseC is integrable. Note thatC is
two-codimensional if and only if

φ2, . . . , φk−1 ≡ 0 modθ.

We have

φj ≡ (D̃xu0,j − (u0,j )uk
D̃xF/Fuk

)dx mod θ

so

φj ≡ 0 modθ (33)
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if and only if

D̃xu0,j − (u0,j )uk
D̃xF/Fuk

= 0. (34)

For example,

φ2 ≡ 0 modθ

if and only if

D̃x(FFu) − (FFu)uk
D̃xF/Fuk

= 0

i.e.

F(D̃xFu − Fuuk
D̃xF/Fuk

) = 0.

The latter condition is equivalent to (32). Hence (32) holds ifC is two-codimensional.
Conversely, suppose that (32) holds. If (33) holds for somej > 2, as just verified for
j = 2, then using (34) we find

D̃xu0,j+1 − (u0,j+1)uk
D̃xF/Fuk

= D̃x(F (u0,j )u) − (F (u0,j )u)uk
D̃xF/Fuk

= F(D̃x(u0,j )u − (u0,j )uuk
D̃xF/Fuk

)

= F(((u0,j )uk
D̃xF/Fuk

)u − (u0,j )uuk
D̃xF/Fuk

)

= F(u0,j )uk
(D̃xF/Fuk

)u = 0

so that

φj+1 ≡ 0 modθ.

This proves thatC is two-codimensional if and only if (32) holds. In this case,C is also
integrable, because

dθ0, . . . , dθk−1 ≡ 0 modθ (35)

and

dθk ≡ F(D̃xF/Fuk
)u dt ∧ dx mod θ. �

The zero set ofF is a (k + 2)-dimensional submanifold ofR (assuming that it is non-
empty) on which the 1-formsφ are equal to zero, soC restricts to a two-codimensional
differential system spanned byθ0, . . . , θk−1, and the restriction is integrable, by (35). Hence
the zero set ofF is foliated by ak-parameter family of additively separable solutions of (30),
whether or not (32) holds. These are the stationary solutions of (30). The compatibility
condition (32) is required for the existence of a(k + 1)-parameter family of additively
separable solutions.

The necessary vanishing ofθk on an additively separable solutionu(x, t) shows that the
function x 7−→ u(x, t) satisfies the ordinary differential equation

DxF [u] = 0 (36)

for each value oft. This implies thatC is two-codimensional and integrable if and only if
there is an additively separable solution of the initial value problem

ut = F [u] u(x, 0) = v(x)

on a neighbourhood ofx, for eachx in the domain ofv, for each solutionv of (36) (note
that C is invariant under translation int). In the variableū = eu, equation (30) is

ūt = F̄ [ū] (37)
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whereF [u] = F̄ [ū]/ū, and (36) is the characteristic equation

Dx(F̄ [ū]/ū) = 0 (38)

of the operatorF̄ . HenceC is two-codimensional and integrable if and only if (37) is
regularly separable. The condition (32) holds if and only if the vector field∂u is an
infinitesimal symmetry of (36), i.e. if and only if the dilation generatorū∂ū is an infinitesimal
symmetry of (38). Therefore theorem 3 and theorem 4 are equivalent. The condition (32)
is the regular separability condition of Kalnins and Miller [2] for 1D evolution equations.

For example, for the second-order equation

ut = f (u)uxx + g(u)u2
x (39)

we have

(D̃xF/Fuxx
)u = ((f ′ + 2g)/f )′uxuxx + (g′/f )′u3

x

so (32) holds if and only if

((f ′ + 2g)/f )′ = 0 (g′/f )′ = 0.

This system of ordinary differential equations is easily solved. Transforming the result into
the field variable in which (39) has the canonical form

ut = (k(u)ux)x (40)

we find all functionsk(u) such that the diffusion equation (40) is regularly separable in
some variable [7]. The separable diffusion equations with translation invariant source terms
linear in ux can be classified in the same way.

The Korteweg–de Vries equation

ut = uxxx + uux

is given in the variablēu by

ūt = ūxxx + 3(u′′(ū)/u′(ū))ūx ūxx + (u′′′(ū)/u′(ū))ū3
x + u(ū)ūx .

The condition

(D̃xF̄ /F̄ūxxx
)ū = 0

is never satisfied, so there is no variable in which the KdV equation is regularly separable.
Note, however, thatu(x) = x is a homogeneous characteristic field of the operator

F [u] = uxxx + uux

leading to the separable solution

u(x, t) = x/(1 − t).

Suppose that (30) and (31) are compatible, so thatR is foliated by the two-dimensional
integrals ofC. The independent commuting vector fields

X = D̃x − (D̃xF/Fuk
)∂uk

T = ∂t + F∂u

are annihilated byC, hence are tangent to each integral. The additively separable solutions
of (30) are thus identified with the one-parameter families of trajectories ofX generated
by the flow ofT . The trajectories ofX are thet-translates of the solutions of (36). In this
construction,T generates the flow of the evolution equation (30) on the solution space of
the ordinary differential equation (36).
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Theorem 5. The equation

ut = F [u]

is regularly separable if and only if its generator

V = F [u]∂u

is an infinitesimal symmetry of its characteristic equation

Dx(F [u]/u) = 0.

Proof. See Olver [9] for discussion of generalized symmetry. In the additive formulation,
the characteristic equation is (36). We have

V (DxF) =
k+1∑
i=0

(Dx
iF )(DxF )ui

so

V (DxF) ≡ 0 modDxF = 0

if and only if

(DxF )u ≡ 0 modDxF = 0

i.e. if and only if (32) holds. �

The result is analogous to Svirshchevskii’s formulation [12] of the reduction method
of Galaktionov [13] and colleagues in terms of generalized symmetries of linear ordinary
differential equations.

6. Parametrization of the class of regularly separable equations

We now writeF [u] = uG[u], whereG(x, u, u1, . . . , uk) is a smooth function withGuk
6= 0.

The characteristic equation

DxG[u] = 0 (41)

is the unique(k + 1)th-order ordinary differential equation for whichG is an invariant (i.e.
first integral; note that all first integrals of annth-order ordinary differential equation have
ordern − 1).

Theorem 6. The equation

ut = uG[u] (42)

is regularly separable if and only ifG is an invariant of a locally homogeneous ordinary
differential equation.

The regularly separablekth-order evolution equations are thus in one-to-one
correspondence with thekth-order invariants of the locally homogeneous(k + 1)th-order
ordinary differential equations. The solutions of a given locally homogeneous ordinary
differential equation are the initial values of the separable solutions of each associated
evolution equation.
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7. Characterization of homogeneity

The generator of the homogeneous ordinary differential equation

uk+1 = uφ(x, u1/u, . . . , uk/u) (43)

is the vector field

Xφ = D̃x + uφ(x, u1/u, . . . , uk/u)∂uk

on the space(x, u, u1, . . . , uk), and its invariants are the non-constant functions
G(x, u, u1, . . . , uk) such that

XφG = 0. (44)

Note that (41) and (43) are identical if and only ifG satisfies (44). The local solutions
of the partial differential equation (44) are arbitrary functional combinations of a complete
set of independent solutionsζ0, . . . , ζk. Hence, locally, the evolution equations (42) with
characteristic equation (43) are those withG = g(ζ0, . . . , ζk) for some functiong. We can
assume thatζ0, . . . , ζk−1 are joint invariants of the independent commuting vector fieldsXφ

and

U = u∂u + u1∂u1 + · · · + uk∂uk

so that they depend only on the variablesx, u1/u, . . . , uk/u. The general joint invariant is
an arbitrary functional combination ofζ0, . . . , ζk−1. Equation (42) is locally homogeneous
if and only if G is an invariant ofU. Hence the homogeneous evolution equations (42)
with characteristic equation (43) are those withG = g(ζ0, . . . , ζk−1). This shows that the
generic regularly separable equation is non-homogeneous. Ifv(x) is a solution of (43) then
v(x)w is locally a one-parameter family of solutions. The invariantsζ are constant on the
solutions of (43), so

ζj [v(x)w] = αj (w)

for some functionsα0, . . . , αk. Note that α0, . . . , αk−1 do not depend onw, because
ζ0, . . . , ζk−1 are homogeneous. Hence the variation of the characteristic value

λ(w) = g(α0, . . . , αk−1, αk(w))

is entirely due to the presence of the non-homogeneous invariantζk, suggesting the following
characterization of homogeneity.

Theorem 7. A regularly separable equation

ut = F [u] (45)

is locally homogeneous if and only if the characteristic value of every separable solution is
independent oft.

Proof. In the additive formulation, the vector fieldT = ∂t + F∂u generates the separable
evolution of characteristic fields, and their characteristic values are given byF. R is foliated
by the family of separable solutions. Hence the characteristic value of every separable
solution is constant if and only ifF is invariant under the flow ofT , i.e. if and only if
Fu = 0. The multiplicative version of this condition is local homogeneity. �
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The space of characteristic fields of the operatorF is foliated by the hyperspaces
of constant characteristic value. These are the solution spaces of thekth-order ordinary
differential equations

F [u]/u = λ. (46)

The flow of a regularly separable equation restricts to the space of characteristic fields.
Theorem 7 shows that the equation is locally homogeneous if and only if the flow preserves
the characteristic value foliation. As in theorem 5, it can be shown that (45) is locally
homogeneous if and only if its generator is an infinitesimal symmetry of every equation
(46).

8. Examples

The solutions of the homogenous third-order equation

uxxx = uxuxx/u (47)

are the solutions of the second-order equations

uxx/u = λ

for the various values ofλ. Phase, frequency, and amplitude are independent invariants of
(47). Phase and frequency are homogeneous, and amplitude is non-homogeneous. Phase
depends onx. Frequency and amplitude are combinations of the independent invariants

uxx/u uuxx − ux
2

and do not depend onx. A translation invariant second-order evolution equation has
characteristic equation (47) if and only if it has the form

ut = ug(uxx/u, uuxx − u2
x) (48)

for some functiong(ζ1, ζ2). These are the only translation invariant second-order equations
which propagate arbitrary exponential data by dilation. Equation (48) is homogenous if
and only if gζ2 = 0. For example, we obtain the linear diffusion equation (21) in the case
g(ζ1, ζ2) = ζ1. If g(ζ1, ζ2) = ζ1 + ζ2 then (48) is the non-homogeneous regularly separable
equation

ut = (1 + u2)uxx − uu2
x

which is transformed to the nonlinear diffusion equation

ut = (tanh−1 u)xx (49)

by the change of variableu 7−→ u/
√

1 + u2. See Doyle and Vassiliou [7] for the explicit
separable solutions of (49) thus obtained.

We conclude with a description of thekth-order equations which propagate arbitrary
kth-order degree polynomial data by dilation. The independent functions

ζj =
k∑

i=j

(−1)i+j

j !(i − j)!
xi−jui j = 0, . . . , k

are invariants of the linear equation

uk+1 = 0. (50)

In fact,

ζj [λ0 + λ1x + · · · + λkx
k] = λj .
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See Svirshchevskii [12] for a complete description of the invarants and symmetries of linear
ordinary differential equations. An evolution equation has characteristic equation (50) if and
only if it has the form

ut = ug(ζ0, . . . , ζk). (51)

The separable solutions of (51) are the functions

u(x, t) = (λ0 + λ1x + · · · + λkx
k)w(t) (52)

where

w′/w = g(λ0w, . . . , λkw).

The characteristic value of (52) is

λ(t) = g
(
λ0w(t), . . . , λkw(t)).

The characteristic value of every separable solution of (51) is constant if and only if
g
(
λ0w, . . . , λkw

)
is independent of local variation inw, for each set of valuesλ0, . . . , λk.

This holds if and only ifg is locally a homogeneous function of the linear invariants
ζ0, . . . , ζk, i.e. if and only if (51) is locally homogeneous. Equation (11) is a non-
homogeneous example in the casek = 2.
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